Computer-aided analyses of Bregman methods

Radu-Alexandru Dragomir, Post-doctoral researcher, EPFL
joint work with Adrien Taylor, Alexandre d'Aspremont, Jérôme Bolte
PEP talks, Louvain-la-Neuve, 13/02/2023

Relatively-smooth convex optimization

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f convex, differentiable.

Relatively-smooth convex optimization

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f convex, differentiable.
Choose a reference function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex and differentiable. Define

Relatively-smooth convex optimization

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f convex, differentiable.
Choose a reference function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex and differentiable. Define

$$
D_{h}(x, y)=h(x)-h(y)-\langle\nabla h(y), x-y\rangle \geq 0
$$

the Bregman divergence of h.

Relatively-smooth convex optimization

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f convex, differentiable.
Choose a reference function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex and differentiable. Define

$$
D_{h}(x, y)=h(x)-h(y)-\langle\nabla h(y), x-y\rangle \geq 0
$$

the Bregman divergence of h.
We say that f is L-smooth relative to h if

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+L D_{h}(x, y)
$$

(Bauschke, Bolte, Teboulle, 2017) (Lu, Freund, Nesterov 2018)

Relatively-smooth convex optimization

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f convex, differentiable.
Choose a reference function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex and differentiable. Define

$$
D_{h}(x, y)=h(x)-h(y)-\langle\nabla h(y), x-y\rangle \geq 0
$$

the Bregman divergence of h.
We say that f is L-smooth relative to h if

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+L D_{h}(x, y)
$$

(Bauschke, Bolte, Teboulle, 2017) (Lu, Freund, Nesterov 2018)

Equivalent to $L h-f$ convex, or

$$
\nabla^{2} f(x) \preceq L \nabla^{2} h(x)
$$

Bregman gradient descent

$$
\begin{equation*}
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \tag{BGD}
\end{equation*}
$$

Also called mirror descent or NoLips.

Bregman gradient descent

$$
\begin{equation*}
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \tag{BGD}
\end{equation*}
$$

Also called mirror descent or NoLips.
Convergence rate (Bauschke, Bolte, Teboulle, 2017) (Lu, Freund, Nesterov 2018)
If f is convex, L-smooth relative to h, and $\lambda \in\left(0, \frac{1}{L}\right]$, then

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{D_{h}\left(x_{*}, x_{0}\right)}{\lambda N}
$$

for x_{*} that minimizes f.

Bregman gradient descent

$$
\begin{equation*}
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \tag{BGD}
\end{equation*}
$$

Also called mirror descent or NoLips.
Convergence rate (Bauschke, Bolte, Teboulle, 2017) (Lu, Freund, Nesterov 2018)
If f is convex, L-smooth relative to h, and $\lambda \in\left(0, \frac{1}{L}\right]$, then

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{D_{h}\left(x_{*}, x_{0}\right)}{\lambda N}
$$

for x_{*} that minimizes f.
Is this tight? Can we design an accelerated version?

Bregman gradient descent

$$
\begin{equation*}
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \tag{BGD}
\end{equation*}
$$

Also called mirror descent or NoLips.
Convergence rate (Bauschke, Bolte, Teboulle, 2017) (Lu, Freund, Nesterov 2018)
If f is convex, L-smooth relative to h, and $\lambda \in\left(0, \frac{1}{L}\right]$, then

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{D_{h}\left(x_{*}, x_{0}\right)}{\lambda N}
$$

for x_{*} that minimizes f.
Is this tight? Can we design an accelerated version?
... can we PEP it?

Bregman gradient descent

$$
\begin{equation*}
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right) \tag{BGD}
\end{equation*}
$$

Also called mirror descent or NoLips.
Convergence rate (Bauschke, Bolte, Teboulle, 2017) (Lu, Freund, Nesterov 2018)
If f is convex, L-smooth relative to h, and $\lambda \in\left(0, \frac{1}{L}\right]$, then

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{D_{h}\left(x_{*}, x_{0}\right)}{\lambda N}
$$

for x_{*} that minimizes f.
Is this tight? Can we design an accelerated version?
... can we PEP it?
Yes, if we look for worst case over both f and h !

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}_{i \in I}$, subject to

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}_{i \in I}$, subject to

■ $x_{1}, \ldots x_{N}$ are generated by BGD: for $k=0 \ldots N-1$,

$$
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right),
$$

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}_{i \in I}$, subject to

■ $x_{1}, \ldots x_{N}$ are generated by BGD: for $k=0 \ldots N-1$,

$$
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right),
$$

- f is convex and differentiable,
- h is convex and differentiable,

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}_{i \in I}$, subject to

■ $x_{1}, \ldots x_{N}$ are generated by BGD: for $k=0 \ldots N-1$,

$$
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right),
$$

- f is convex and differentiable,
- h is convex and differentiable,
- f is L-smooth relative to $h: L h-f$ is convex,

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}_{i \in I}$, subject to

■ $x_{1}, \ldots x_{N}$ are generated by BGD: for $k=0 \ldots N-1$,

$$
x_{k+1} \in \underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), u-x_{k}\right\rangle+\frac{1}{\lambda} D_{h}\left(u, x_{k}\right),
$$

- f is convex and differentiable,
- h is convex and differentiable,
- f is L-smooth relative to $h: L h-f$ is convex,
- $D_{h}\left(x_{*}, x_{0}\right) \leq 1$.

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}_{i \in I}$, subject to

- $x_{1}, \ldots x_{N}$ are generated by BGD: for $k=0 \ldots N-1$,

$$
\nabla h\left(x_{k+1}\right)=\nabla h\left(x_{k}\right)-\lambda \nabla f\left(x_{k}\right)
$$

- f is convex and differentiable,
- h is convex and differentiable,
- $d=L h-f$ is convex,
- $D_{h}\left(x_{*}, x_{0}\right) \leq 1$.

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}, u$, subject to

- $x_{1}, \ldots x_{N}$ are generated by BGD: for $k=0 \ldots N-1$,

$$
\nabla h\left(x_{k+1}\right)=\nabla h\left(x_{k}\right)-\lambda \nabla f\left(x_{k}\right)
$$

- f is convex and differentiable,
- $h=(f+d) / L$ with d convex and differentiable,
- $D_{h}\left(x_{*}, x_{0}\right) \leq 1$.

Pepping Bregman

$$
\operatorname{maximize} f\left(x_{N}\right)-f\left(x_{*}\right)
$$

in $f, h,\left\{x_{i}\right\}, u$, subject to

- $x_{1}, \ldots x_{N}$ are generated by BGD: for $k=0 \ldots N-1$,

$$
\nabla h\left(x_{k+1}\right)=\nabla h\left(x_{k}\right)-\lambda \nabla f\left(x_{k}\right)
$$

- f is convex and differentiable,
- $h=(f+d) / L$ with d convex and differentiable,
- $h\left(x_{*}\right)-h\left(x_{0}\right)-\left\langle\nabla h\left(x_{0}\right), x_{*}-x_{0}\right\rangle \leq 1$.

Pepping Bregman

$$
\operatorname{maximize} f_{N}-f_{u}
$$

in $\left\{f_{i}, f_{i}^{\prime}\right\}_{i \in I},\left\{h_{i}, h_{i}^{\prime}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I}, u$, subject to

- for $k=0 \ldots N-1$,

$$
h_{k+1}^{\prime}=h_{k}^{\prime}-\lambda f_{k}^{\prime}
$$

- the set $\left\{x_{i}, f_{i}, f_{i}^{\prime}\right\}_{i \in I}$ is interpolable by a differentiable convex function,

■ the set $\left\{x_{i}, L h_{i}-f_{i}, L h_{i}^{\prime}-f_{i}^{\prime}\right\}_{i \in I}$ is interpolable by a differentiable convex function,

- $h_{*}-h_{0}-\left\langle h_{0}^{\prime}, x_{*}-x_{0}\right\rangle \leq 1$.

Pepping Bregman

$$
\operatorname{maximize} f_{N}-f_{u}
$$

in $\left\{f_{i}, f_{i}^{\prime}\right\}_{i \in I},\left\{h_{i}, h_{i}^{\prime}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I}, u$, subject to

- for $k=0 \ldots N-1$,

$$
h_{k+1}^{\prime}=h_{k}^{\prime}-\lambda f_{k}^{\prime}
$$

- the set $\left\{x_{i}, f_{i}, f_{i}^{\prime}\right\}_{i \in I}$ is interpolable by a differentiable convex function:

$$
\left\{\begin{array}{l}
f_{i}-f_{j}-\left\langle f_{j}^{\prime}, x_{i}-x_{j}\right\rangle \geq 0 \\
f_{i}-f_{j}-\left\langle f_{j}^{\prime}, x_{i}-x_{j}\right\rangle>0 \quad \text { if } f_{i}^{\prime} \neq f_{j}^{\prime}
\end{array}\right.
$$

- the set $\left\{x_{i}, L h_{i}-f_{i}, L h_{i}^{\prime}-f_{i}^{\prime}\right\}_{i \in I}$ is interpolable by a differentiable convex function,
- $h_{u}-h_{0}-\left\langle h_{0}^{\prime}, u-x_{0}\right\rangle \leq 1$.

Pepping Bregman

$$
\operatorname{maximize} f_{N}-f_{u}
$$

in $\left\{f_{i}, f_{i}^{\prime}\right\}_{i \in I},\left\{h_{i}, h_{i}^{\prime}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I}, u$, subject to

- for $k=0 \ldots N-1$,

$$
h_{k+1}^{\prime}=h_{k}^{\prime}-\lambda f_{k}^{\prime}
$$

- the set $\left\{x_{i}, f_{i}, f_{i}^{\prime}\right\}_{i \in I}$ is interpolable by a differentiable convex function:

$$
\left\{\begin{array}{l}
f_{i}-f_{j}-\left\langle f_{j}^{\prime}, x_{i}-x_{j}\right\rangle \geq 0, \\
f_{i}-f_{j}-\left\langle f_{j}^{\prime}, x_{i}-x_{j}\right\rangle>0 \quad \text { if } f_{i}^{\prime} \neq f_{j}^{\prime}
\end{array}\right.
$$

- the set $\left\{x_{i}, L h_{i}-f_{i}, L h_{i}^{\prime}-f_{i}^{\prime}\right\}_{i \in I}$ is interpolable by a differentiable convex function:
- $h_{u}-h_{0}-\left\langle h_{0}^{\prime}, u-x_{0}\right\rangle \leq 1 . \quad[\ldots]$

Pepping Bregman

$$
\operatorname{maximize} f_{N}-f_{u}
$$

in $\left\{f_{i}, f_{i}^{\prime}\right\}_{i \in I},\left\{h_{i}, h_{i}^{\prime}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I}, u$, subject to

- for $k=0 \ldots N-1$,

$$
h_{k+1}^{\prime}=h_{k}^{\prime}-\lambda f_{k}^{\prime}
$$

- the set $\left\{x_{i}, f_{i}, f_{i}^{\prime}\right\}_{i \in I}$ belongs to the closure of sets interpolable by differentiable convex functions:

$$
f_{i}-f_{j}-\left\langle f_{j}^{\prime}, x_{i}-x_{j}\right\rangle \geq 0
$$

- the set $\left\{x_{i}, L h_{i}-f_{i}, L h_{i}^{\prime}-f_{i}^{\prime}\right\}_{i \in I}$ belongs to the closure of sets interpolable by differentiable convex functions:

$$
[\ldots]
$$

- $h_{u}-h_{0}-\left\langle h_{0}^{\prime}, u-x_{0}\right\rangle \leq 1$.

Pepping Bregman

$$
\operatorname{maximize} f_{N}-f_{u}
$$

in $\left\{f_{i}, f_{i}^{\prime}\right\}_{i \in I},\left\{h_{i}, h_{i}^{\prime}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I}, u$, subject to

- for $k=0 \ldots N-1$,

$$
h_{k+1}^{\prime}=h_{k}^{\prime}-\lambda f_{k}^{\prime}
$$

- the set $\left\{x_{i}, f_{i}, f_{i}^{\prime}\right\}_{i \in I}$ belongs to the closure of sets interpolable by differentiable convex functions:

$$
f_{i}-f_{j}-\left\langle f_{j}^{\prime}, x_{i}-x_{j}\right\rangle \geq 0
$$

- the set $\left\{x_{i}, L h_{i}-f_{i}, L h_{i}^{\prime}-f_{i}^{\prime}\right\}_{i \in I}$ belongs to the closure of sets interpolable by differentiable convex functions:

$$
[\ldots]
$$

- $h_{u}-h_{0}-\left\langle h_{0}^{\prime}, u-x_{0}\right\rangle \leq 1$.

Problem is linear in f_{i}, h_{i}, and in the dot products

$$
\left\langle h_{i}^{\prime}, x_{j}\right\rangle,\left\langle f_{i}^{\prime}, x_{j}\right\rangle, \quad i, j \in I
$$

Pepping Bregman

$$
\operatorname{maximize} f_{N}-f_{u}
$$

in $\left\{f_{i}, f_{i}^{\prime}\right\}_{i \in I},\left\{h_{i}, h_{i}^{\prime}\right\}_{i \in I},\left\{x_{i}\right\}_{i \in I}, u$, subject to

- for $k=0 \ldots N-1$,

$$
h_{k+1}^{\prime}=h_{k}^{\prime}-\lambda f_{k}^{\prime}
$$

- the set $\left\{x_{i}, f_{i}, f_{i}^{\prime}\right\}_{i \in I}$ belongs to the closure of sets interpolable by differentiable convex functions:

$$
f_{i}-f_{j}-\left\langle f_{j}^{\prime}, x_{i}-x_{j}\right\rangle \geq 0
$$

- the set $\left\{x_{i}, L h_{i}-f_{i}, L h_{i}^{\prime}-f_{i}^{\prime}\right\}_{i \in I}$ belongs to the closure of sets interpolable by differentiable convex functions:

$$
[\ldots]
$$

- $h_{u}-h_{0}-\left\langle h_{0}^{\prime}, u-x_{0}\right\rangle \leq 1$.

Problem is linear in f_{i}, h_{i}, and in the dot products

$$
\left\langle h_{i}^{\prime}, x_{j}\right\rangle,\left\langle f_{i}^{\prime}, x_{j}\right\rangle, \quad i, j \in I
$$

\rightarrow can be solved for large d by SDP LP relaxation.

Results for BGD

- The numerical value of (PEP) is exactly L / N, i.e., the bound

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{L D_{h}\left(x_{*}, x_{0}\right)}{N}
$$

is tight in the worst case for BGD.

Results for BGD

- The numerical value of (PEP) is exactly L / N, i.e., the bound

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{L D_{h}\left(x_{*}, x_{0}\right)}{N}
$$

is tight in the worst case for BGD.

- Limiting nonsmooth worst-case: the original feasible set is not closed; the supremum is reached as (f, h) approach some nonsmooth functions (\bar{f}, \bar{h}).

Results for BGD

- The numerical value of (PEP) is exactly L / N, i.e., the bound

$$
f\left(x_{N}\right)-f\left(x_{*}\right) \leq \frac{L D_{h}\left(x_{*}, x_{0}\right)}{N}
$$

is tight in the worst case for BGD.

- Limiting nonsmooth worst-case: the original feasible set is not closed; the supremum is reached as (f, h) approach some nonsmooth functions (\bar{f}, \bar{h}).

Worst-case sequence of functions:
https://www.geogebra.org/classic/re5c2phw

Lower bound for general Bregman methods

Can we find a lower bound that holds for all Bregman-type methods?

Lower bound for general Bregman methods

Can we find a lower bound that holds for all Bregman-type methods?

Bregman first-order method, informal definition

An algorithm \mathcal{A} is a Bregman first-order method if it uses only the oracles ∇f, $\nabla h, \nabla h^{*}$, where

$$
\nabla h^{*}(y)=\underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} h(u)-\langle y, u\rangle,
$$

and linear combinations.

Lower bound for general Bregman methods

Can we find a lower bound that holds for all Bregman-type methods?

Bregman first-order method, informal definition

An algorithm \mathcal{A} is a Bregman first-order method if it uses only the oracles ∇f, $\nabla h, \nabla h^{*}$, where

$$
\nabla h^{*}(y)=\underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} h(u)-\langle y, u\rangle,
$$

and linear combinations.

We look for a worst-case function that hides information in high dimension by adding to the PEP the constraints

$$
\left\langle\nabla f\left(x_{i}\right), \nabla f\left(x_{j}\right)\right\rangle=0, \quad \forall i \neq j
$$

Similar approach to "worst function in the world" (Nesterov, 2003).

Lower bound for general Bregman methods

Can we find a lower bound that holds for all Bregman-type methods?

Bregman first-order method, informal definition

An algorithm \mathcal{A} is a Bregman first-order method if it uses only the oracles ∇f, $\nabla h, \nabla h^{*}$, where

$$
\nabla h^{*}(y)=\underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} h(u)-\langle y, u\rangle,
$$

and linear combinations.

We look for a worst-case function that hides information in high dimension by adding to the PEP the constraints

$$
\left\langle\nabla f\left(x_{i}\right), \nabla f\left(x_{j}\right)\right\rangle=0, \quad \forall i \neq j
$$

Similar approach to "worst function in the world" (Nesterov, 2003).

No acceleration theorem (D., Taylor, d'Aspremont, Bolte, 2021)
The rate $1 / N$ is optimal for Bregman first-order methods on relatively-smooth convex problems for general reference functions h.

High-dimensional worst case function

(a) Limiting function \bar{f}

(b) Feasible f approaching \bar{f}

Conclusion

Besides helping to prove the result, PEPs allowed us to understand

- the structure of the class of functions characterized by a set of inequalities,
- the many possible ways things can go wrong in the worst case...

R-A. Dragomir, A. B. Taylor, A. d'Aspremont, J. Bolte. Optimal Complexity and Certification of Bregman First-Order Methods. Mathematical Programming, 2021.

