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f(x)

f(y) + 〈∇f(y), x− y〉+ LDh(x, y)

x

Equivalent to Lh− f convex, or

∇2f(x) � L∇2h(x)
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Bregman gradient descent

xk+1 ∈ argmin
u∈Rd
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λ
Dh(u, xk) (BGD)
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If f is convex, L-smooth relative to h, and λ ∈ (0, 1L], then

f(xN)− f(x∗) ≤
Dh(x∗, x0)

λN
,

for x∗ that minimizes f .

Is this tight? Can we design an accelerated version?

... can we PEP it?

Yes, if we look for worst case over both f and h!
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Pepping Bregman

maximize fN − fu

in {fi, f ′i}i∈I, {hi, h′i}i∈I, {xi}i∈I, u, subject to

� for k = 0 . . . N − 1,
h′k+1 = h′k − λf ′k,

� the set {xi, fi, f ′i}i∈I is interpolable by a differentiable convex function,

� the set {xi, Lhi − fi, Lh′i − f ′i}i∈I is interpolable by a differentiable convex
function,

� h∗ − h0 − 〈h′0, x∗ − x0〉 ≤ 1.
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� hu − h0 − 〈h′0, u− x0〉 ≤ 1.

Problem is linear in fi, hi, and in the dot products

〈h′i, xj〉, 〈f ′i, xj〉, i, j ∈ I,
→ can be solved for large d by SDP LP relaxation.

9/13



Results for BGD

� The numerical value of (PEP) is exactly L/N , i.e., the bound

f(xN)− f(x∗) ≤
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N

is tight in the worst case for BGD.
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Worst-case sequence of functions:
https://www.geogebra.org/classic/re5c2phw
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We look for a worst-case function that hides information in high dimension by
adding to the PEP the constraints

〈∇f(xi),∇f(xj)〉 = 0, ∀i 6= j.

Similar approach to “worst function in the world” (Nesterov, 2003).

No acceleration theorem (D., Taylor, d’Aspremont, Bolte, 2021)

The rate 1/N is optimal for Bregman first-order methods on relatively-smooth
convex problems for general reference functions h.
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High-dimensional worst case function

(a) Limiting function f (b) Feasible f approaching f
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Conclusion

Besides helping to prove the result, PEPs allowed us to understand

� the structure of the class of functions characterized by a set of inequalities,

� the many possible ways things can go wrong in the worst case...

f

L-smooth convex functions

Differentiable convex functions

Convex functions

R-A. Dragomir, A. B. Taylor, A. d’Aspremont, J. Bolte. Optimal Complexity and Certification of

Bregman First-Order Methods. Mathematical Programming, 2021.
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